Organische und anorganische durchstimmbare photonische Mikrokavitätsbauelemente für die Datenübertragungstechnik

Organic and inorganic tunable photonic micro-cavity devices for optical communications

Amer Tarraf, Roth & Rau AG

04.03.04

Institute of Microstructure C Technology and Analytics University of Kassel, Germany

Center for Interdisciplinary Nanostructure Science and Technology University of Kassel, Germany

Macromolecular Chemistry and Molecular Materials University of Kassel, Germany

Content

Motivation and basics

Novel low-cost technology for optical MEMS devices

Stress investigation

- Macroscopically averaged stress (macro stress)
- Microscopically detected stress (micro stress)
- Impact of the stress on cavity length & FWHM of the filters, shape & ROC of the membranes

Optical devices

- Low-cost tunable dielectric Fabry-Pérot filters
- Tunable and non tunable VCSELs

Organic light emitting devices involving novel materials

Summary and outlook

Dielectric microstructures

 \rightarrow Material characterization

Tunable passive and active air-gap micro-cavity devices

- \rightarrow Dynamic DWDM systems (filters and VCSELs)
- \rightarrow Spectroscopy and sensorics
- \rightarrow Wavelength monitoring
- \rightarrow Medical applications

Organic light emitting diodes (OLEDs)

- \rightarrow Display technology (e.g. laser TV, true colors big pannels 10x20m)
- \rightarrow Information technology (e.g data storage)

Novel low-cost technology

Lithography: Sacrificial layer (standard photo resist)

Deposition: Low temperature SiO_2 , Si_3N_4 (PECVD)

Patterning: Vertical (Mesa): dry etching (CHF_3/Ar) Lateral: lithography

Underetching: Wet etching: Aceton/2-isopropanol Dry etching: O₂plasma

Material characterization

Stress of PECVD Si₃N₄ and SiO₂

$$\sigma_{Bulk, total} = \frac{E_s}{6(1-\nu_s)} \frac{t_s^2}{t_f} \left(\frac{1}{R_2} - \frac{1}{R_1}\right)$$

- E_s Young modulus of the substrate
- Poisson ratio of the substrate
- Thickness of the substrate
- Thickness of the layer
- $\begin{matrix} v_s \\ t_s \\ t_f \\ R_2 \\ R_1 \end{matrix}$ Radius of curvature before the deposition
- Radius of curvature after the deposition

Advantage: fast estimation of the global stress Disadvantage: inhomogeneities in the layers can not be considered

Material characterization

Stress measurement: micro stress

$$\sigma_{Bulk} = \frac{E}{1 - \nu} \frac{d}{2l_i l_a} \delta$$

 $\begin{array}{lll} \sigma_{hom} & \mbox{Homogeneous stress} \\ E & \mbox{Young modulus of the layer} \\ \nu & \mbox{Poisson ratio of the layer} \end{array}$

Micro devices

Cavity length (L), ROC and FWHM of the filters are affected by the stress and lateral design

Different structures on the mask ensure a wide range of variation of the optical parameters in one Batch-Process:

ROC:	-9 mm15 mm
Cavity length:	130 nm13 μm
FWHM:	1.5 nm70 nm
$\Delta\lambda =$	200 nm (Filter dip positions)

3D view of a suspended membrane, implemented bei the mask set **IMA2**

Micro devices

Examples of optical parameters variation

Examples: Variation of the optical properties of micro devices in a Batch-Process

Curved dielectric membrane

Curved dielectric membrane

Flat DBR

Curved dielectric membrane

Convex DBR

Design of novel tunable low-cost dielectric filter

Dielectric filter

Insertion loss = -0.19 dB FWHM = 5.5 nm DBR1 = 5 periods DBR2 = 5.5 periods Sacrificial layer = 2.2 μ m

Depending on the lateral design and stress, different FWHM and filter dip positions are possible

Non tunable VCSEL (optically pumped)

Pump laser: 980nm PRI=70µs PW=35µs

20°C

15°C

-9°C -6°C

25

30

35

Laser pump power / mW

40

2,0

1,5

1,0

VCSEL

Emission wavelength 1566.7 nm Max. output power 0.5 µW @ RT FWHM < 0.1 nm SMSR 25 dBm

Pump laser

Pump wavelength 980 nm Pulse repetition interval (PRI) 70 µs Pulse width 35 µs

45

50

Tunable VCSEL (optically pumped)

2-Chip concept

Tunable VCSEL (optically pumped)

New generation of stress induced curved membranes

2D modell calculations of the membrane (TUD) + Electrically pumped half-VCSEL (WSI) Implementation by PECVD (IMA) delivered ROC = 1mm suitable for elec. pump. tun. VCSEL

New organic light emitting material

Half cavity dip is observed in organic micro cavity devices: DBR1 + 92.22 nm Spiro² + λ /4 Si₃N₄

DBR2: Organic VCSEL in the blue wavelength range ???

IMA know-how: Micromechanics tunable organic blue VCSEL

Si₃N₄: Absorption

Novel optoelectronic devices requires new materials and technologies (e.g. IBD)

Summary / Objectives

Material characterization

- \rightarrow Stress control in dielectric films
- \rightarrow Control of the cavity length, ROC, FWHM in optical filters by varying the stress and lateral design
- \rightarrow Implementation of concave, convex and planar optical suspended membranes

Air-gap micro-cavity devices

- \rightarrow Tunable filters (thermal actuation, 15nm/mA, FWHM=8nm)
- \rightarrow Non tunable VCSELs (1-chip concept, output power 2.5 $\mu W)$
- \rightarrow Tunable VCSELs (2-chip concept, output power 300-400 μ W, 26nm tuning range)

New organic light emitting material and devices

- \rightarrow Excellent optical and mechanical properties of Spiro^2
- \rightarrow Half organic micro cavity devices

Objectives

- \rightarrow to enhance optical and mechanical device properties
- \rightarrow Tunable organic blue RCLEDs and maybe tunable organic blue VCSELs??
- \rightarrow Electrically pumped tunable VCSEL (1.55 μ m)
- \rightarrow Application of new materials (low losses) and new deposition techniques (IBD-systems)

- IMA: J. Daleiden, D. Gutermuth, H. Hillmer, S. Irmer, T. Tscherner, V. Rangelov, F. Römer
- **mmCmm:** T. Fuhrmann, T. Spehr and J. Salbeck
- **KTH:** M. Strassner and N. Chitica
- **TUD:** F. Riemenschneider, H. Halbritter and P. Meißner

