Charakterisierung und Anwendungsmöglichkeiten einer geclusterten Ionenstrahlquelle

Frank Scholze, Michael Tartz, Horst Neumann

Workshop "Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen"

Workshop Mühlleithen

Teilaufgabe des Verbundprojektes

INP e.V. Greifswald

Roth & Rau Oberflächentechnik AG

Institut für Oberflächenmodifizierung e.V. Leipzig

"Strahlprofilsteuerung großflächiger Ionenstrahlquellen für die Ultrapräzisionsbearbeitung"

Projektträger : VDI - Technologiezentrum

Ernst Moritz Arndt Universität Greifswald Institut für Physik

AIS Automation Dresden GmbH

Dr. Hermann Schlemm Ionenstrahl- und Oberflächentechnik

CISQ120ECR-4

"Universalquellenkörper"

Zentrale Ionenquelle mit

- •3 Quellen geneigt um 25° zur Mittelachse für Strahlfokussierung
- •3 Quellen geneigt um 8° zur Mittelachse zur Strahlhomogenisierung

Fokussierende Anordnung

Dreigittersystem Material : Grafit Gitterdicke : 1 mm Gitterabstand : 1 mm Lochdurchmesser : 1,6 mm Lochkreisdurch.: 120 mm Raster : 2,1 mm Lochanzahl : 2860 geom. Transparenz : 53% Gitterradius : 300 mm (Sphäre)

Parameter Argon: 27 sccm (4x ISQ) Druck : 2,8*10⁻⁴ mbar Beam : 700 V / 100 mA Acc : 230 V / 3 mA

Stromdichte

Variation des Abstandes, Integraler Strom

84

82

80

78

76

74

72

70

68 66

64

10

Integral j(x,y) / mA

Maximale Ionenstromdichte der zentralen Quelle

Radius der fokussierenden Gitter ist 300 mm -Brennpunkt der Anordnung liegt bei 300 mm Maximum liegt bei einem Abstand von ca. 19 cm Integraler Ionenstrom sinkt linear mit zunehmendem Abstand zur Ionenquelle -Wechselwirkung mit Restgas (Ladungsaustauschprozesse, Stöße ...)

20

Abstand / cm

25

. 15

30

Integraler Ionenstrom des Sondenarray

Simulation der maximalen Stromdichte

Variation des Abstandes

Sphärische Gitter mit Radius 300 mm

Triviale Lösung (Divergenzwinkel = 0°) - Stromdichtemaximum liegt bei 30 cm

Verschiebung der Lage der maximalen Stromdichte zu geringern Abständen mit zunehmendem Divergenzwinkel

Halbwertsbreite

Variation des Abstandes

Durchmesser des Ionenstrahles bei 50 % der maximalen Ionenstromdichte

Halbwertsbreite erreicht bei einem Abstand von 19 cm den geringsten Wert

Korreliert mit den Ergebnissen zur maximalen Ionenstromdichte Andere Möglichkeiten der Strahlbreitendefinition

- j_{max} um 5 % Schwankung ==> Homogenität
- 90 % von I_{gesamt} ==> Verunreinigungen

Gekippte Ionenquelle

Maximale Ionenstromdichte

Kippwinkel 25°

- schwankt > Maximum wandert in Zwischensondenbereich
- ist kleiner als bei zentraler Quelle
 > effektive Messfläche ist kleiner
 (cos 25° = 0,91) + zurückgesetzte
 Sondenfläche, Ausbildung eines
 Schattenbereiches

Messproblem : Maximum verschiebt sich auf dem Array und durchquert den Sondenzwischenraum

•• 🖋

• • •

Integraler Ionenstrom

Clusterquelle fokussierend

Variation des Abstandes

Workshop Mühlleithen

2.- 4.März 2004

Maximale Ionenstromdichte

als Funktion des Abstandes

- Maximum bei 28 cm Abstand
- Maximale Stromdichte 5,8 mA/cm²

Einfluss der Beamspannung auf die maximale Stromdichte

Gemessene maximale Ionenstromdichte wurde mit den Gesamtstromfaktor korrigiert

Maximal erreichbare Ionenstromdichte in einem Abstand von 30 cm bei einer Clusterquelle aus vier Modulen beträgt 13 mA/cm² bei 900 V Beamspannung

Clusterquelle für großflächige Stromverteilung

Einzelgitter

- quasiplan (R = 1400 mm)
- maximale Abweichung von Ebene ~1,3 mm
- Löcher axial gebohrt

Gittersystem

- Material : Grafit
- Dreigittersystem
- Gitterabstand : 1,0 mm
- Gitterdicke : 1,0 mm

Stromdichte der Einzelmodule

MW = 210 W (je Modul) Argon 27 sccm (gesamt) Beam 800 V / 75 mA Accel 100 V / 2 mA

μ A/cm² 270,0 240,0 210,0 180,0 150,0 120,0 90,00 60,00 30,00 0

400

400

Workshop Mühlleithen

Stromdichte Clusterquelle

350.0

306,3

262,5 218,8

175,0

131.3

87,50 43,75

D

gemessen

Summe Einzelmodule

MW = 210 W (je Modul) Argon 27 sccm (gesamt) Beam 800 V / 333 mA Accel 100 V / 5 mA

Gesamtstromdichte ist Summe der einzelnen Module

Variation der Beamspannung

400 V; 256 mA

600 V; 299 mA

μ A/cm² Si 350,0 be 306,3 262,5 V 218,8 G 175,0 131,3 87,50 43,75

۵

Silhouette der Verteilung ist beamspannungsunabhängig

Verteilung wiederspiegelt die Geometrie der Anordnung

Workshop Mühlleithen

Variation der Beamspannung

Substratrotation

Rotation der Stromdichteverteilung

Rotationsradius durch Größe der Arrays begrenzt
nur ,,halbe" Clusterquelle in Betrieb

Rotationspunkt

Zusammenfassung

Erzeugung von Ionenstromdichten über 10 mA/cm² durch fokussierende Gittersysteme und ISQ-Modulen

Ort maximaler Stromdichte hängt von der Beamletdivergenz ab und stimmt nicht mit geometrischem Fokus überein

Erzeugung großflächiger Ionenstromdichteverteilungen durch Überlagerung mehrerer ISQ-Module ist möglich

Die Geometrie der Modulanordnung spiegelt sich in der Verteilungsfunktion wieder (rotationssymmetrische Verteilungen sind bei den üblichen Abmessungen schwer zu realisieren)

Die Gesamtverteilung entsteht durch Superposition der Einzelmodulverteilungen

