J. Meinhardt, D. Hirsch, R. Mehnert

Praktische Erfahrungen bei XPS-Messungen von Kunststoffen – Voraussetzungen und Grenzen

Leibniz-Institut für Oberflächenmodifizierung Leipzig e.V. Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz

Permoserstraße 15, D-04318 Leipzig, Germany

Tel.: ++49 (0341) 235-2692 Fax: ++49 (0341) 235-2584 E-mail: juergen.meinhardt@iom-leipzig.de Internet: www.iom.uni-leipzig.de

Gliederung

- Grundlagen XPS
- Möglichkeiten und Grenzen der Analyse
- Aussagefähigkeit von Analysenergebnissen f
 ür spezifische Fragestellungen und Anmerkungen zur Probenhygiene
- Zusammenfassung

Leibniz-Institut für Oberflächenmodifizierung Leipzig e.V. Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz

Permoserstraße 15, D-04318 Leipzig, Germany

Tel.: ++49 (0341) 235-2692 Fax: ++49 (0341) 235-2584 E-mail: juergen.meinhardt@iom-leipzig.de Internet: www.iom.uni-leipzig.de

Electron Spectroscopy for
 Chemical Analysis (ESCA)

X-Ray Photoelectron
 Spectroskopie (XPS)

Begriffserläuterung

IOM

- Weiche Röntgenstrahlung auf Probe
- Über photoelektrischen Effekt aus Probe Elektronen ausgelöst
- Nach kinetischer Energie analysiert gemäß:

$E_{kin} = hv - E_B - ?_{Sp}$ (1)

- E_{kin} kinetische Energie
- hv Energie der anregenden Röntgenstrahlung
- E_B ursprüngliche Bindungsenergie des Elektrons in der Probe
- ? _{Sp} Austrittsarbeit des Spektrometers

Grundlagen Photoelektronen-Spektroskopie

 ursprüngliche Bindungsenergie E_B detektierter
 Photoelektronen typisch für emittierende Elemente und chemische Umgebung ("chemical shift")

$$E_{B} = hv - E_{kin} - ?_{Sp}$$
 (2)

C 1s	284,9 eV
N 1s	401,0 eV
0 1s	531,0 eV
Cr 2p 3/2	576,9 eV
Cr 2p 1/2	(576,9+9,8)eV

EST 2004

XPS – Bindungsenergie und Elemente

Intensität von Photoelektronenlinien wird durch die ablaufenden Prozesse bestimmt:

- Photoionisation c_A , s (h?), L_A (?)
- Streuprozesse der Photoelektronen (elastisch und inelastisch, letzteres oft vernachlässigbar) ?(E_{kin}) cos?
- Gerätegrößen I_(X-ray), T(E_{kin}), D(E_{pass});

Intensität einer Photoelektronenlinie bei einem homogenen Festkörpers (bei Vernachlässigung elastischer Streuung):

$$I_{A} = c_{A} I_{(X-ray)} s_{A}(h?) L_{A}(?) ?(E_{kin}) cos? T(E_{kin}) D(E_{pass}) (3)$$

- **C_A**: Konzentration des Elements A in der Probe
- I_(X-ray): Röntgenintensität der Ka-Linie
- s_A(h?) : Ionisierungsquerschnitt der verwendeten Elektronen
- L_A(?) : Winkelbezogene Ausbeute der Photoelektronen
- **?(E**kin) : mittlere freie Weglänge der Photoelektronen im Festkörper
- **cos?** : Cosinus des Winkels zwischen Probennormale und Analysator- bzw. Linsenöffnungsachse
- T(E_{kin}) : elektronenoptische Transmission des Spektrometers
- D(E_{pass}): Detektoreffizenz für Elektronen der gewählten Energie

Intensität von Photoelektronenlinien

?(Ekin) : mittlere freie Weglänge der Photoelektronen im Festkörper

• Kin. Energiebereich zwischen 100 - 1500 eV = 0,5 - 3 nm

Wegen Schwächung der Intensität Photoelektronen auf Weg zur Probenoberfläche maximale Analysentiefe 5 – (7) nm

$$L_A(?)$$
: $L_A(?) = 1+0.5 \beta_A (1.5 \sin^2 ? - 1)$ (4)

- ? Winkel zwischen Röntgenstrahlrichtung und Analysatorabnahmerichtung (gerätespezifisch, ? kann weiten Bereich umfassen z.B. bei Verwendung von Magnetsammellinsen, meist aber enger Raumwinkel von etwa 10 Grad, Hersteller streben oft Winkelunabhängigkeit an bei 54,7 °)
- B_A : Asymmetrieparameter (atomniveauspezifisch, 0 < β < 2) d.h.: 0< L_A(?) < 1,5

Photoelektronenemission - Intensität

Line	Energy, eV	Width, eV
ΥΜζ	132.3	0.47
Zr MC	151.4	0.77
Nb MC	171.4	1.21
ΜοΜζ	192.3	1.53
$Ti L\alpha$	395.3	3.0
$Cr L\alpha$	572.8	3.0
Ni La	851.5	2.5
Cu La	929.7	3.8
Mg Kα	1253.6	0.7
Al Ka	1486.6	0.85
Si Ka	1739.5	1.0
YLα	1922.6	1.5
Zr La	2042.4	1.7
Τί Κα	4510.0	2.0
CrKa	5417.0	2.1
Cu Ka	8048.0	2.6

Table 2.1 Energies and widths of some characteristic soft X-ray lines

I(X-ray): Röntgenintensität der Ka-Linie

Nutzbare charakteristische Röntgenlinien

(nach J. C. Riviere in D. Briggs, M.P. Seah, Practical Surface Analysis, 2nd Edition, Salle u. Sauerländer 1990)

Peak	Element	Rel. Ionisierungsquerschnitt s Bezüglich der C 1s –Elektronen (Gesamt-Elektronen in der Subschale) für Al Kα (*) (s _{C1s} =1,36 10 ⁻²⁰ cm ²)	Atomare Empfindlichkeitsfaktoren S für Al Kα (#)
1s	н	0,002 XY	-
	С	1,0	1,0 (Bezug)
	N	1,8	1,68
	0	2,93	2,64
	F	4,43	4,0
	Mg	11,18	14,0
2p _{3/2}	Ca	3,35	4,2
	As	27,18	27,2
4f 7/2	Pt	8,65	10,2
	U	27,36 xx	36,0 xx

XYDynamik 2x105xxDynamik 461,4

xx Dynamik 450

(*) J. H. Scofield J. Electron Spectrosc. Relat. Phenom. 8 (1976) 129

(#) nach C.D. Wagner et al. Surf. Interface Anal. 3 (1981) 211; auf Bezugsbasis C1s mit (*) angepasst

s_A(h?): Ionisierungsquerschnitt der verwendeten Elektronen

Vergleich relativer Ionisierungsquerschnitte und atomarer Empfindlichkeitsfaktoren für Beispielelemente

Warum wird Wasserstoff nicht analytisch erfasst?

H 1s ist 5000x schwächer als C1s – nicht messbar mit Al Ka (geht im Rauschen unter)

Ausweg: Nutzung von Strahlung niedriger Energie

Vakuum-UV: nur Valenzelektronen, diese haben komplexe Struktur

Ultraweiche Röntgenstrahlung: - Synchrotron (durchstimmbar) Kosten!

- M? -Linien (M zeta) Elemente Y - Mo

Nachteile der ultraweichen charakt. Stahlung: zu geringes Energiefenster für E_B.

daher Doppelanode nötig Al/Zr (technisch einfach)

 $\rm H_2$ (u. andere einfache Gase wie $\rm CH_4)$ spektroskopiert Cavell/ Allison, Banna/Shirley in den Jahren 1975-80

H₂: H 1s 20 Stunden Signal akkumuliert; nur dank des hohen Wirkungsquerschnitts bei 151eV Röntgenenergie kommt Signal aus dem Rauschen (bei Al Ka s zu klein)

R.G. Cavell, D.A. Allison Chem Phys Lett 36 (4) 514-517 1975

EST 2004

Photoelektronen-Spektroskopie – Analyse Wasserstoff

• Warum Analysen im UHV-Bereich (10⁻⁸ – 10⁻¹¹mbar)?

-Wegen geringer mittlerer freier Weglänge der Elektronen -Vermeiden Kontamination durch Restgasatome und C-H

• Was bei isolierenden Proben beachten ?

Positiv und teilweise inhomogen aufgeladene Proben beim Messvorgang ständig mit Elektronen beschießen, damit Ladungsneutralität auf Oberfläche (Flood-Gun)

XPS – Spezifische Probleme

IOM

Nach Herstellerangaben folgende Fehlergrenzen:

- Absoluter Fehler: mittlere Nachweisgrenze: ± 0,1 Atom %
- Relativer Fehler:
- · Gerätetechnik, gesamt:
 - Reproduzierbarkeit : sehr gut;
 - Physikalische Richtigkeit / Nichtrichtigkeit (software- und interpretationsabhängig):
 - Statistische Aussage (abhängig von den Messbedingungen):

Fehler: < + 1 %

Fehler: $\leq \pm 10 \%$

Fehler: $\leq \pm 3\%$

Sage 100 - Fehlergrenzen

XPS-Spektrum zur Beurteilung von Technologien PE-Folie, Corona (1500W,80% rel.Feuchte)

Schema flexibler Schaltungsträger als Polyimid-Metallverbund

EST 2004

Polyimid-Metallverbund – Nachweis Kohäsionsbruch

IOM Polyimid unbehandelt poimm.000

AFM-Aufnahme der Polyimid-Folie im Anlieferungszustand

EST 2004

Leibniz-Institut für Oberflächenmodifizierung Leipzig e.V.

 Permoserstraße 15, D-04318 Leipzig, Germany

 Tel.: ++49 (0341) 235-2692
 E-mail: juergen.

 Fax: ++49 (0341) 235-2584
 Internet: www.ior

eipzig, Germany E-mail: juergen.meinhardt@iom-leipzig.de Internet: www.iom.uni-leipzig.de

Zusammenfassung

- Mit XPS Oberflächenanalysen im Dickenbereich bis 5 (7) nm
- Tiefenprofilanalysen bis ca. 10 nm durch Winkelvariation zwischen Probennormale und Röntgenstrahl
- Tiefenprofilanalysen durch das in situ (UHV)- Sputtern mittels Argon bei Polymeren problematisch wegen C-Anreicherung
- XPS eine gute Analysenmethode zur
 - qualitativen und quantitativen elementare Oberflächenzusammensetzung
 - Bestimmung der Bindungszustände an der Oberfläche
 - Nachweisführung von Oberflächenveränderungen
 - Qualifizierung technologischer Oberflächenprozesse
- Kontamination durch Berühren, Aerosole, Luftkontakt (Staub, Wasser usw.), Weichmacher und Gleitmittel (Folien) vermeiden

Leibniz-Institut für Oberflächenmodifizierung Leipzig e.V. Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz

Permoserstraße 15, D-04318 Leipzig, Germany

Tel.: ++49 (0341) 235-2692 Fax: ++49 (0341) 235-2584

E-mail: juergen.meinhardt@iom-leipzig.de Internet: www.iom.uni-leipzig.de

