Improved Wear Resistance of Martensitic Stainless Steel

D. Manova, S. Mändl, H. Neumann, B. Rauschenbach

Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany

Contents

Motivation

Nitriding of Austenitic Stainless Steel Applications of Martensitic Stainless Steel Experiment Results Wear Resistance Hardness

Phase Formation & Composition

Discussion & Summary

Austenitic Stainless Steel

- Formation of expanded austenite characterised by anisotropic lattice expansion and concentration dependent diffusion coefficient.
- Hardness increases to 1000 1200 HV after nitrogen insertion (PIII, low energy implantion or plasma nitriding).
- Large wear reduction of 2 3 orders of

Martensitic Steel

Very good wear resistance Moderately good corrosion resistance

Applications

Turbine blades, tools, knives Bearings, structural aircraft parts Orthopaedic surgery, bone saws Dental surgery

Possibility of hardening with energetic nitrogen implantation?

PIII into martensitic stainless steel

1.4542 (X5CrNiCuNb17.4), 1.4021 (X20Cr13),1.4034 (X46Cr13), 1.4057 (X20CrNi17.2), 1.4104(X12CrMoS17)

Pulse voltage 10 and 25 kV, Nitrogen or nitrogen/methane atmosphere 380 ℃°, 1 - 6 h implantation time.

Analysis: XRD + glow discharge optical spectroscopy (GDOS).

Hardness measurements, wear resistance measurements

Leibniz-Institut für Oberflächenmodifizierung

Experiment

Martensitic Steel Grade 1.4542

No hardness variation with load for non-implanted sample Increased hardness up to 2000 HV, significantly decreasing for higher load, thus indicating a layered system Highly reduced wear by two orders of magnitude (contact pressure 1.0 GPa, low speed)

No breakthrough through layer even up to 80 or 400 m wear track length

Martensite Steel Grade 1.4542

Fast nitrogen diffusion (slowed by additional carbon)

Concentration dependent diffusion constant (deviation from erfc shape) Formation of "expanded martensite"

Anisotropic lattice expansion

XRD – different steel grades

Expanded lattice after nitrogen PIII for all investigated grades Lattice expansion depends on steel grades No other phases in XRD spectra (range 30° - 90°) Layer thickness varying between steel grades at identical treatments (smallest for 1.4542)

Hardness- different steel grades

Significantly improved hardness for all steel grades up to 9810 MPa $(\equiv 1000 \text{ HV})$ Absolute and relative increase depends on steel grade / chemical composition No correction for elastic deformation, i.e. corrected values are about 15 - 20% higher

Wear resistance – different steel grades

Experimental conditions: contact pressure 1.4 GPa, high speed High variability in wear reduction Not identical wear mode as for the high performance steel 1.4542

Discussion

Apparently no access to investigate and identify the mechanism No chemical path! Metallurgical path?

Schäfflerdiagramm

 \Rightarrow Formation of expanded martensite not

related with metallurgical phase transition!

Ni = 30(C+N) + 0.5 Mn + Ni + 0.5 (Cu+Co)Cr = 1.5Si + Cr + Mo + 2Ti + 0.5 Nb

Introduction of nitrogen into steel should lead to increase of nickel equivalent

However, no austenitic phase found in XRD spectra even for high-Ni alloys

⇒ Expected phase transition
from martensite to austenite is
not observed

Leibniz Gemeinschaft

S. Sienz, S. Mändl, B. Rauschenbach, Surf. Coat. Technol. **156**, 185 (2002).

B. Abendroth, A. Kolitsch, Annual FZR Report 2002

Very fast increase of stress in the begining of austenite nitriding

Accumulation of stress for BN leads to phase transition h-BN to c-BN Same cause for austenite and BN: accomodation of stress necessary for

transition?

However: Inward \Leftrightarrow Outward growth

Acknowledgements

- Dr. J.W. Gerlach
- Dr. W. Frank
- Dr. B. Faust
- Fr. A. Prager-Duschke
- Dr. E. Richter

IOM Leipzig IOM Leipzig IOM Leipzig IOM Leipzig FZR

- OSTEC GmbH, Meißen
- Sächsische Aufbaubank

