

Technische Universität Chemnitz Institut für Physik Physik fester Körper D-09107 Chemnitz

XI. Erfahrungsaustausch "Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen"

Charakterisierung einer gepulsten Magnetronentladung zur Abscheidung von MgO mittels zeitaufgelöster Doppelsondenmessungen

Th. Dunger, Th. Welzel, H. Kupfer, F. Richter

02.03.2004

gefördert vom BMBF: FKZ 13N8053

Gliederung

- Einleitung
- Experimenteller Aufbau
- Einfluss von Prozessgrößen
 - Pulsparameter
 - Gaszusammensetzung
- Zusammenfassung und Ausblick

Einleitung

Magnetronzerstäubung:

- negativ vorgespanntes Target
- \rightarrow Ionenbeschuß
- \rightarrow Zerstäubung des Targets

Reaktive Zerstäubung:

- Hinzugabe von Reaktivgasen ($z.B.O_2$)
- Abscheidung von isolierenden Schichten (z.B. MgO) am Ort des Substrates und auf der <u>Targetoberfläche</u>

Problem: Aufladung der Schicht durch Ionenbeschuß

→ Entladungsinstabilitäten, el. Durchbruch der Schicht (Arcing)

 \rightarrow Störung der Schichteigenschaften

<u>Gepulste DC-Entladung ($f = 10 \dots 500 \text{ kHz}$):</u>

- kurzzeitig positives Targetpotential
- \rightarrow z.B. Abbau der Oberflächenladung

Einleitung (Diagnostik gepulster Entladungen)

Untersuchung von Beschichtungsplasmen z.B. LANGMUIR-Doppelsonde Bestimmung von n, T_e

Zeitintegrierende Messung:

- \rightarrow "Mittelwerte" für n, T_e
- Änderungen in den einzelnen Phasen der Entladung bleiben unzugänglich

Was passiert in den einzelnen Phasen der Entladung ?

Zeitaufgelöste LANGMUIR-Doppelsondenmesstechnik

Computergesteuerte Kennlinienaufnahme

- Sondenspannung [-100 V ... 100 V]
- Sondenstrom als Spannungsabfall über $R_M = 1 \ k\Omega$ mit digitalem Speicheroszilloskop gemessen
- Mittelung über 20 Zyklen
- Steuerung des Oszilloskops über GPIB-Schnittstelle

<u>Trigger:</u> • Ausschaltflanke der Targetspannung (U_{trig}= + 50 V)

Elektroden

• Wolfram, $\emptyset = 0.5 \text{ mm}, 1 = 10 \text{ mm}$

Experimenteller Aufbau

- zylindrisches Magnetron Ø = 100 mm (Mg-Target)
- Pinnacle Plus 5 kW (Advanced Energy)
- Pulsparameter: Frequenz: f = (10)

Frequenz: f = (100 - 350) kHzAuszeit: $\tau_{aus} = (0.5 - 5.0) \mu \text{s}$

- Arbeitsdruck p = 0.4 Pa (konst.)
- Gas: 50 sccm Argon + Sauerstoff
- float. Substrathalter, $d_{TS} = 80 \text{ mm}$
- Doppelsonde:
 - 52 mm über dem Target
 - parallel zur Targetoberfläche

Typischer Zeitverlauf der Ladungsträgerdichte

Zeitliches Verhalten der Ladungsträgerdichte in der Anphase

 $p = 0.4 Pa, F_{Ar}/F_{O_2} = 50 / 10$

Zeitliche Änderung der Ladungsträgerdichte (f = 150 kHz)

Zeitliche Position und Höhe der Extrema (f = 150 kHz)

• n(D) und n(E) konstant, n(A) keine klare Aussage möglich

Welche Pulsparameter beeinflussen das Verhalten von C?

n(C) und t'(C) für verschiedene Pulsparameter-Variationen: $f = konst. = 150 \text{ kHz}, \tau_{aus} = (1.0 \dots 3.3) \mu s$ $dc = konst. = 0.6, f = (100 \dots 300) \text{ kHz}$ $\tau_{aus} = konst. = 1.4 \mu s, f = (150 \dots 300) \text{ kHz}$

Das Verhalten von C wird durch die Auszeit bestimmt.

Je länger τ_{aus} , desto zeitiger und größer ist C.

Verhalten von $|U_{max}|$: zeitliche Position t'(U_{max}) nimmt ab, linearer Anstieg bei Erhöhung von τ_{aus}

Verhalten von $|I_{max}|$: zeitliche Position t'(I_{max}) nimmt ab Zunahme bei Erhöhung von τ_{aus}

Ausgangspunkt:

• homogenes Plasma ($n_{aus} \sim 10^9 \text{ cm}^{-3}$) zum Beginn der Anphase

Annahmen:

- Vernachlässigung des Magnetfeldes
- abruptes Anlegen einer konstanten negativen Spannung an das Target

. .

Einfluss auf das Maximum A

 \rightarrow geringer O₂ - Gehalt führt zu höherem **n** beim "**Zünden"**

n(A) auch von Pulsparametern beeinflusst

 \rightarrow A dominiert bei höheren Frequenzen (f \geq 200 kHz) und kurzen Auszeiten \rightarrow ?

Zusammenfassung und Ausblick

- Zeitaufgelöste Sondenmessungen liefern detaillierten Einblick in einzelne Phasen der Entladung
- Maximum C maßgebliche von der Auszeit beeinflusst
- Gaszusammensetzung beeinflusst das Zünden der Entladung

- Vergleich mit anderen Diagnostikverfahren (zeitaufgelöste OES)
- Ausbau der Modellvorstellungen
- Verbesserung und Weiterentwicklung der Messtechnik
 - Verfälschung der Sondenspannung durch Messwiderstand