Atmosphärendruck-PECVD zur Großflächenbeschichtung

Ines Dani

Fraunhofer Institut für Werkstoff- und Strahltechnik (IWS) Dresden Abteilung CVD Technologie / Arbeitsgruppe Atmosphärendruck-PECVD Motivation

Verfahren

O Mikrowellen-PECVD

O ArcJet-PECVD

Schichteigenschaften (SiO₂, TiO₂)

Seite 1

erstellt: 08.03.04

Motivation für PECVD bei Atmosphärendruck

Großflächenbeschichtung; kostengünstiger Prozess Atmosphärendruck In-line Prozesse geringe Anlagenkosten Substrattemperaturen < 400 °C Erweiterung der CVD-Anwendungen Beschichtung von Plastik, Glas, Stahl,...

Seite 2

2004 Vortrag Muehlleithen.ppt

erstellt: 08.03.04

Charakteristik AP-PECVD

- Remote-Plasma-CVD
- "offener" Durchlaufreaktor, kontinuierliche Beschichtung
- skalierbare Arbeitsbreite (z.Zt. bis 450 mm)
- Beschichtungsraten, statisch ≤100 nm/s, dynamisch ca. 1.5 nm/m/s
- Plasmagase: N₂, Ar, O₂, H₂ (kein Elektrodenkontakt)
- kontrollierte Beschichtungsatmosphäre

nichtoxidische Schichten

 anorganische Schichten: SiO₂, TiO₂, a-C:H,

2004 Vortrag Muehlleithen.ppt

erstellt: 08.03.04

Mikrowellen-PECVD

Remote Precursoraktivierung:

Keine Kontaminationen in der Plasmaquelle und Plasmakammer

Precursoraktivierung und Reaktion zu schichtbildenden Spezies direkt an der Substratoberfläche

Geringe Pulverbildungstendenz

Im Einsatz: Cyrannus 6"

2004_Vortrag_Muehlleithen.ppt

erstellt: 08.03.04

Fraunhofer_{Institut} Werkstoff- und Strahltechnik

Fluiddynamische Simulation des Beschichtungsvorganges

Strömungsdynamik im µW PECVD Reaktor

- Strömungsführung
- Homogenität über Substratbreite
- Temperatur-/Konzentrationsfelder
- Beschichtungsrate

2004 Vortrag Muehlleithen.ppt

erstellt: 08.03.04

Fraunhofer_{Institut} Werkstoff- und Strahltechnik

Fluiddynamische Simulation - Strömungsführung

Temperaturverteilung

Gasströmung

2004_Vortrag_Muehlleithen.ppt

erstellt: 08.03.04

Fluiddynamische Simulation - Konzentrationsfelder

Prozessgasströme an der Substratoberfläche einer Einzeldüse

Fluiddynamische Simulation – Beschichtungsrate

Einzeldüse

Simulation Schichtabscheidung

reale Schichtabscheidung (statisches Düsenfeld)

Seite 8

2004_Vortrag_Muehlleithen.ppt

erstellt: 08.03.04

Dynamische ArcJet-Beschichtung auf Flachglas

Substrattemperatur

(IR-Kamera)

2004 Vortrag Muehlleithen.ppt

mittlere Substrat-Oberflächentemperatur 110°C während der Beschichtung

Beschichtungszeit: 90 s Schichtdicke: ca. 100 nm

Fraunhofer_{Institut} Werkstoff- und Strahltechnik

1WS

erstellt: 08.03.04

Schichteigenschaften – SiO₂ auf mc-Si-Wafer

Oberflächenmorphologie (AFM)

dichte Schichten

ebene Schichtoberfläche, unabhängig von Schichtdicke: $R_a < 2,5$ nm

Optische Eigenschaften (UV-VIS-Ellipsometrie)

transparente dielektrische Schichten, Absorption = 0

Brechungsindex (500 nm) = 1,46

2004_Vortrag_Muehlleithen.ppt

erstellt: 08.03.04

Atmosphärendruck-PECVD zur Großflächenbeschichtung

SiO₂ auf Stahl - Morphologie (FE-SEM)

SiO₂ auf verzinktem Stahlband – genaue Abbildung der Oberfläche

2004_Vortrag_Muehlleithen.ppt

erstellt: 08.03.04

Fraunhofer_{Institut} Werkstoff- und Strahltechnik

Atmosphärendruck-PECVD zur Großflächenbeschichtung

SiO₂ – Barriereeigenschaften

Elektrochemische Messungen: => Cyclovoltametrie

Fläche unter anodischem Zweig ~ ungeschützter (leitender) metallischer Oberfläche

 \Rightarrow dichte Barriereschicht

Seite 14

2004 Vortrag Muehlleithen.ppt

TiO₂-Schichten auf Edelstahl – Photokatalytische Eigenschaften

Dankeschön

Daniela Rogler	Beate Leupolt
Liliana Roch	Dr. Bolko Schöneich
Gerrit Mäder	Dr. Wulf Grählert
Romy Liske	Carmen Ostwald, TKS
Dr. Volkmar Hopfe	Bernd Schuhmacher, TKS

2004_Vortrag_Muehlleithen.ppt

erstellt: 08.03.04

Fraunhofer_{Institut} Werkstoff- und Strahltechnik

2004 Vortrag Muehlleithen.ppt

erstellt: 08.03.04

Fraunhofer_{Institut} Werkstoff- und Strahltechnik

